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Abstract. Given a particular kind of geometry (Riemannian, Complex, foliation, ...),
it is of fundamental importance to determine when two objects are isomorphic. The
method of equivalence is a systematic way to classify the local invariants of a particular
geometry. The general approach is to rewrite our geometric objects as G-structures,
where G is a Lie group that captures the essence of the geometry. We may then compute
something called Spencer cohomology of G, which tells us what the local invariants are.
After outlining the general theory I will cover several examples. Among these we will
see why curvature is the only local invariant in Riemannian geometry.

1. G-Structures

One of the fundamental problems in geometry is that of equivalence, the problem of
determining when two objects in a geometric category are isomorphic. While there is
no general definition of what a ‘geometric’ structure on manifolds is, there are common
features which all of the classical geometric structures have. One of the way to capture
what is meant by a ‘geometric’ structure is a G-structure, where G is a Lie group. The
choice of G determines a kind of geometry, in the sense that G is the group of ‘local
symmetries’ of your geometry, or the group which preserves the framings compatible
with a geometry. To define what a G-structure is we need first a definition.

Definition. Given a smooth manifold Mn, a coframe at x ∈ M is an isomorphism
u : TxM → Rn. We denote the set of coframes based at x by FGL

x . The frame bundle
FGL is then given by the union ∪x∈MFGL

x ⊂ T ∗M ⊗Rn. The set FGL is a sub-bundle of
T ∗M ⊗ Rn whose projection map we denote by π.

It is not difficult to see that this is a principal GL(Rn) bundle. Indeed, for frames
u, v ∈ FGL

x the map A = vu−1 ∈ GL(Rn) is the unique element of GL(Rn) so that
Au = v.

Definition. Let G ⊂ GL(Rn) be a Lie subgroup. A G-structure on Mn is a principal G
subbundle of FGL.

G-structures arise whenever we have a geometric structure on M which is preserved by
G. To illustrate, consider Riemannian geometry, which corresponds to O(n)-structures.

Example. A Riemannian metric on a manifold M is a choice of a non-degenerate, sym-
metric bi-linear form gx at each point of M . We give Rn the standard Euclidean structure.
Then we consider the subset FO(n) of coframes u ∈ FGL so that u : TxM → Rn is an
isometry. Given two frames u, v ∈ FO(n), the element vu−1 preserves the inner product
on Rn, so must be an element of O(n). Thus FO(n) is an O(n) structure on M .

Conversely, given an O(n)-structure F on M we can determine a unique metric on M
as follows. At each point x in M choose any u in the fiber Fx. We let gx be the pullback
of the fixed inner product on Rn along u. Because any other coframe differs from u by
an orthogonal element, this is independent of our choice of coframing u. Smoothness of
gx follows from smoothness of F .
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A frequently convenient way to describe a G-structure E → M is to give a section
σ : M → E. The fiber over a point x ∈ M is then the orbit of σ(x) under the action of
G. For example, in Riemannian geometry one often gives an orthonormal coframing of
the manifold instead of explicitly writing out the metric.

2. Equivalence

Any diffeomorphism f : Mn → Nn has a canonical lift f 1 : FGL(M) → FGL(N) given
by f 1(u) = u ◦ (f−1)′. This map is a bundle isomorphism, which allows us to describe
when two G-structures are equivalent.

Definition. Let E → M and F → N be G-structures. A diffeomorphism f : M → N is
an equivalence of G-structures if f 1(E) = F .

As mentioned before, we would like a method to determine when two G-structures are
equivalent. For simplicity (but ultimately without any real loss of generality.) let us
consider the question of when a G-structure is equivalent to the flat model, defined as

Definition. A G-structure E → M is flat if each point lies in a coordinate chart
(x1, . . . , xn) so that the coframing (dx1, . . . , dxn)p ∈ Ep for each point p in the coor-
dinate domain.

To show that a structure is flat we need to find a map into Rn which satisfies conditions
on its derivatives. In other words, a given G-structure is flat exactly when a certain
overdetermined PDE has a solution. This is where the theory of Exterior Differential
Systems excels, so it makes sense to use machinery from the general theory of EDS. In
particular, the Spencer cohomology will tell us what the obstructions to flatness are.

3. Tableaux

The PDE involved in determining flatness are first order linear equations. In the
real analytic category solutions to such equactions are determined through the study of
tableaux.

Suppose as given vector spaces V and W with respective bases v1, . . . , vn and w1, . . . , ws
and coordinates x = xivi, u = uawa. Given a system of constant coefficient, first order,
homogeneous PDE on functions f from W to V ,

Bλ(f) = Bλi
a

∂fa

∂xi
= 0,

we define a linear subspace B of W ∗ ⊗ V spanned by elements Bλi
a w

a ⊗ vi (a raised
subscript denotes the dual basis.). B is the space of equations for our PDE, and the dual
space B⊥ ⊂ W ⊗ V ∗ is the space of linear solutions, called a tableau.

Each of these steps can be reversed, so a tableau is the same data (in a dual form) as a
constant coefficient, first order, homogeneous PDE. The reason for considering tableaux
is that the existence of analytic solutions becomes a problem in linear algebra. Indeed,
if the series

f(x) = (pa + pai x
i + paijx

ixj + . . .)wa

is a solution then each homogeneous term must be as well. The identification of R[x1, . . . , xn]
with S(V ∗) = ⊕∞k=0 Symk V ∗ suggests the following

Definition. Given a tableau A ⊂ W ⊗ V ∗, the q-th prolongation is

A(q) = (A⊗ (V ∗)⊗q) ∩ (W ⊗ Symq+1 V ∗).
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An alternative, equivalent definition is to let A(0) = A and 1

A(q+1) =

{
P ∈ W ⊗ Symq+1 V ∗ :

∂

∂xi
P ∈ A(q) for all i

}
From this definition one sees that A(q) is the space of homogeneous degree q solutions

to the associated PDE.
Now let us return to the case of a possibly flat G-structure. By definition the group G

is a matrix Lie group with a representation into GL(V ), V = Rn. Consequently, the Lie
algebra g is a linear subspace of gl(V ) = V ⊗ V ∗, which we consider as a tableau. The
prolongations of g are intimately tied to the invariants of G-structures via the Spencer
cohomology of g, defined below. First an example which we will use later.

Example. In the case of Riemannian geometry g = so(n) ⊂ V ⊗ V ∗. Because we have
a metric we may lift indices to identify V ⊗ V ∗ with V ∗ ⊗ V ∗. Under this identification
so(n) is mapped to Λ2V ∗. This implies that so(n)(1) = (Λ2V ∗⊗V ∗)∩(V ∗⊗Sym2 V ∗) = 0.
Indeed, an element Aijkv

i ⊗ vj ⊗ vk ∈ so(n)(1) is anti-symmetric in the first two indices
and symmetric in the last two. Thus

Aijk = −Ajik = −Ajki = Akji = Akij = −Aikj = −Aijk.
From the second definition of prolongation we see immediately that A(q) = 0 for q > 0.

4. Spencer Cohomology

Although it would take at least another talk to explain the specifics, the problem of
determining whether a G-structure is flat comes down to the existence of a solution to
a particular system of PDE. In the general theory of Exterior Differential Systems there
is a very powerful tool, Spencer Cohomology, for determining all of the obstructions to
solutions.

To define Spencer Cohomology, we define the free Spencer Complex as the complex
Cp,q = Symp V ∗ ⊗ ΛqV ∗ for p, q ≥ 0 and differential on P ⊗ dxi1 ∧ . . . ∧ dxiq ∈ Cp.q given
by

d(P ⊗ dxi1 ∧ . . . ∧ dxiq) =
n∑
i=1

∂P

∂xi
⊗ dxi ∧ dxi1 ∧ . . . ∧ dxiq

Under the identification of Sym∗(V ∗) with R[x1, . . . , xn] this is exactly the exterior de-
rivative of polynomial forms.

Theorem (Polynomial Poincare lemma). The homology Hp,q(C∗,∗) = 0 for p+q > 0 and
H0,0(C∗,∗) = R.

Proof. Consider the vector field ξ = xi∂xi on Rn. By Cartan’s formula for a form ω ∈ Cp,q

we have
d ◦ iξω + iξ ◦ dω = Lξω = (p+ q)ω.

In other words, for p+ q > 0 the identity map is chain homotopic to zero. �

Now, we may tensor Cp,q with the vector space W and consider the elements of the W
factor as constants. The Polynomial Poincare lemma still holds with the difference that
H0,0(W ⊗ C∗,∗) = W .

Finally, since Cp+1,q(A) := A(p) ⊗ ΛqV ∗ ⊂ W ⊗ Cp+1,q we may consider this as a
subcomplex of W ⊗C∗,∗. It is straightforward from the second definition of prolongation

1Under the identification of R[x1, . . . , xn] with S(V ∗) we can define partial derivatives
∂

∂xi : Symq+1 V ∗ → Symq V ∗.
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that the differential is well defined on the restriction. The cohomology of this complex is
where obstructions to flatness live.

Considering A = g, we get a diagram such as:

g(2) g(2) ⊗ V ∗ g(2) ⊗ Λ2V ∗ g(2) ⊗ Λ3V ∗ · · ·

g(1) g(1) ⊗ V ∗ g(1) ⊗ Λ2V ∗ g(1) ⊗ Λ3V ∗ · · ·

g g⊗ V ∗ g⊗ Λ2V ∗ g⊗ Λ3V ∗ · · ·

V V ⊗ V ∗ V ⊗ Λ2V ∗ V ⊗ Λ3V ∗ · · ·

We can now roughly state the following theorem.

Theorem. For fixed G, all the obstructions to a G-structure being flat are contained in
Hp,2(g) for p ≥ 0.

What this means is, given a particular G-structure E →M , at each point x ∈M there
is an element (curvature) of Hp,2(g) for each p ≥ 0 and E is flat at x exactly if each of
these elements is zero in a neighborhood of x. Of course, for most Lie groups the groups
Hp,2(g) will vanish for large enough p so there will be finitely many curvature conditions
to check.

Example. In the case of Riemannian geometry g = so(n). We have already seen that
g(p) = 0 for p > 0, so we need only compute Hp,2 for p = 0, 1.

The map Λ2V ∗ ⊗ V ∗ → V ∗ ⊗ Λ2V ∗ is an isomorphism (check?), so H0,2 = 0. This
corresponds to the existence and uniqueness of the Levi-Civita connection.

The group H1,2 is the kernel of the map Λ2V ∗ ⊗ Λ2V ∗ → V ∗ ⊗ Λ3V ∗, the Bianchi
identity.

In the case that we want to determine if two non-flat G-structures M and N (of
dimension n) are equivalent we look at the product M×N and consider the sub-manifold
where the differences of the curvature elements is zero. If there is an n-dimensional sub-
manifold which is transverse to both projections then locally it will describe a graph of a
diffeomorphism between M and N . This diffeomorphism will be a G-isomorphism from
part of M to part of N .
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